The generator matrix

 1  0  1  1  1  1  1  X 2X  1  1  1  1 2X^2  1  1  X  1  1  1  1  1  1 2X^2  1  1  1 2X^2  1 2X^2+X  1  1 X^2+X  1  1  1  1 X^2+X  1  1  1  1 2X^2+2X  1  1  1 2X^2+X  1  1 2X^2  1  1  1  1  1  1  1  X  1  1  1  1  1 2X  1  1  X  1  X  1  1
 0  1  1  2 2X^2 2X+1  2  1  1  2 2X^2+2X+1 2X^2+X X+1  1 2X^2 X+2  1 X^2+2X X^2+2X+2 2X^2+X+1 2X^2+X+1 2X X^2+X+2  1 X^2  1 2X^2+2X  1 2X^2+X+2  1 X^2+2X+2 2X^2+X+1  1  X X+1  2 X^2+2X+1  1 X^2+2X 2X^2+2X 2X^2+1 2X+2  1 X^2+X+2 X^2+X 2X+1  1  1 2X^2+2  1 2X X^2+2 X^2+2X+1  0 2X^2+X+1 X^2+X+1 X^2+2  1 X^2+2X+1 X+2 2X^2+2X+1  0  2  1 2X X^2+X  1  1  0 X^2+2X X^2+X
 0  0 2X  0 2X^2  0  0 X^2  0 2X^2 2X^2 X^2 X^2 X^2+X  X 2X^2+2X 2X 2X X^2+X X^2+X  X  X 2X X^2+X 2X^2+X 2X 2X 2X^2+X X^2+X 2X^2+2X 2X^2+2X 2X^2+2X 2X^2+2X 2X X^2+2X 2X X^2+2X 2X^2+X 2X^2 2X^2+2X X^2 X^2 X^2+2X X^2+X 2X^2+2X 2X X^2+X  X  X X^2  0 X^2+2X 2X 2X^2+2X  0  X 2X^2  0 2X^2+X 2X^2  X X^2+X 2X^2+X 2X^2+X X^2+2X  X  0 2X X^2+X  0 2X^2+X
 0  0  0  X 2X^2+X X^2+X X^2  X X^2+2X X^2+2X 2X^2+2X 2X 2X^2 X^2+2X X^2 X^2+X 2X 2X^2+X 2X^2+2X X^2  X 2X^2+X X^2  0 2X^2+2X X^2+X 2X X^2+X  X 2X^2 X^2+2X  X  X  X 2X X^2+2X 2X^2 X^2 2X^2 2X^2 X^2+2X X^2+X X^2+X X^2+X X^2 X^2+2X X^2+X 2X  X  X 2X^2+X  0  0 2X 2X^2 2X 2X^2+2X 2X^2+2X 2X^2 X^2 X^2+X 2X^2+2X 2X 2X^2 2X^2 X^2+2X 2X 2X^2 X^2+2X X^2+X  X

generates a code of length 71 over Z3[X]/(X^3) who�s minimum homogenous weight is 132.

Homogenous weight enumerator: w(x)=1x^0+552x^132+144x^133+738x^134+2350x^135+1692x^136+1962x^137+4260x^138+4212x^139+3906x^140+5538x^141+6336x^142+5544x^143+6614x^144+5166x^145+3114x^146+3288x^147+1350x^148+738x^149+756x^150+54x^151+36x^152+398x^153+192x^156+84x^159+24x^162

The gray image is a linear code over GF(3) with n=639, k=10 and d=396.
This code was found by Heurico 1.16 in 21.2 seconds.